- Product Data -

Name	12V2000G16F	Speed [rpm]	1500
Application Group	3B	Nominal power [kW]	665
Dataset	Ref. 25°C/-; Air charge air cooling	Nominal power [bhp]	891
		Frequency [Hz]	50

Exhaust Regulations NOx emission optimized ;

Reference conditions

No.	Description	Index	Value	Unit
6	Intake air temperature		25	°C
7	Charge-air coolant temperature		-	°C
8	Barometric pressure		1000	mbar
9	Site altitude above sea level		100	m

0. Data-relevant engine design configuration

No.	Description	Index	Value	Unit
43	Amendment history drawing No.		Ν	-
44	Amendment history drawing No.		N	
44	(cont.)			-
0	Engine rated speed switchable			
0	(1500/1800 rpm)		-	-
13	Engine without sequential turbocharging		×	
12	(turbochargers without cut-in/cut-out control)		^	-
31	Engine with air-cooled charge air		х	-
61	Engine with water/charge air cooling			
01	(LT, on-engine)		-	-

1. Power-related data

No.	Description	Index	Value	Unit
1	Engine rated speed	А	1500	rpm
٨	Continuous power ISO 3046 (10% overload capability)	•	665	1.3.67
4	(design power DIN 6280, ISO 8528)	А	005	kW
5	Fuel stop power ISO 3046	A	732	kW
8	Mean effective pressure (MEP)		19.9	har
0	(Continuous power ISO 3046)		19.9	bar
0	Mean effective pressure (MEP)		21.8	har
9	(Fuel stop power ISO 3046)		21.0	bar

2. General Conditions (for maximum power)

No.	Description	Index	Value	Unit
46	Individual power calculation (ESCM)		×	
40	required for maximum power		^	-
1	Intake air depression (new filter)	А	15	mbar
2	Intake air depression, max.	L	40	mbar
3	Exhaust back pressure	А	30	mbar
4	Exhaust back pressure, max.	L	50	mbar
5	Fuel temperature at fuel feed connection	R	25	°C
٥	Fuel temperature at fuel feed connection, max.		_	°C
5	(w/o power reduction)	L	-	C
10	Fuel temperature at fuel feed connection, max.	L	65	°C

 BL Reference value: fuel stop power

 Maximum engine power that cannot be run continuously on some applications (stabilization reserve)

 DL Reference value: continuous power

 Engine power that can be run continuously under standard conditions

Actual value must be greater than specified value
Actual value must be less than specified value

Adequate verification not yet available (tolerance +/-10%)
^{an} Adequate verification not yet available (tolerance +/-5%)

Design value
 Value required for the design of an external system
 (plant)
 Guideline value
 Typical average value as information – only suitable
 for design purposes to a limited extent
 Linti value
 A value representing the lower limit/minimum value or
 upper limit/maximum value that may not be
 exceeded. Not suitable for design purposes

- Product Data -

Name	12V2000G16F	Speed [rpm]	1500
Application Group	3B	Nominal power [kW]	665
Dataset	Ref. 25°C/-; Air charge air cooling	Nominal power [bhp]	891
		Frequency [Hz]	50

Exhaust Regulations

NOx emission optimized ;

49	Max. ambient temperature in direct vicinity of vibration damper	L	-	°C
18	Fuel temperature at fuel feed connection, min.	L	Ν	°C

3. Consumption

No.	Description	Index	Value	Unit
17	Specific fuel consumption (be) - 100 % CP	R	198	g/kWh
17	(+ 5 %; EN 590; 42.8 MJ/kg)	ĸ	198	g/ K W II
18	Specific fuel consumption (be) - 75 % CP	R	203	g/kWh
10	(+ 5 %; EN 590; 42.8 MJ/kg)	ĸ	205	g/kwn
19	Specific fuel consumption (be) - 50 % CP	R	213	g/kWh
19	(+ 5 %; EN 590; 42.8 MJ/kg)	ĸ	215	g/KW1
20	Specific fuel consumption (be) - 25 % CP	R	229	g/kWh
20	(+ 5 %; EN 590; 42.8 MJ/kg)	ĸ	225	g/kwn
21	Specific fuel consumption (be) - FSP	R	198	g/kWh
21	(+ 5 %; EN 590; 42.8 MJ/kg)	n	198	g/ K VV11
56	Specific fuel consumption (be) - 100 % FSP	R	_	g/kWh
50	(+ 5 %; EN 590; 42.8 MJ/kg)	n		g/ K VV11
57	Specific fuel consumption (be) - 75 % FSP	R	_	g/kWh
57	(+ 5 %; EN 590; 42.8 MJ/kg)	h	-	g/ K VVII
58	Specific fuel consumption (be) - 50 % FSP	R	-	g/kWh
50	(+ 5 %; EN 590; 42.8 MJ/kg)	IX.		5/ 100
59	Specific fuel consumption (be) - 25 % FSP	R	_	g/kWh
	(+ 5 %; EN 590; 42.8 MJ/kg)			8/ 1001
73	No-load fuel consumption	R	11	kg/h
	Lube oil consumption after 100 h of operation			
92	(B = fuel consumption per hour)			
	Guideline value does not apply for the design	R	0.35	% of B
	of EGAT systems. Please consult the Applications			
	Center with regard to the layout of EGA systems.			
62	Lube oil consumption after 100 h of operation, max.	1	0.8	% of B
02	(B = fuel consumption per hour)	L	0.0	70 UI D

4. Model-related data (basic design)

No.	Description	Index	Value	Unit
3	Engine with exhaust turbocharger (ETC) and intercooler		х	-
4	Exhaust piping, non-cooled		х	-
33	Working method: four-cycle, diesel, single-acting		х	-
34	Combustion method: direct injection		х	-
36	Cooling system: conditioned water		х	-
37	Direction of rotation: c.c.w. (facing driving end)		х	-
6	Number of cylinders		12	-
7	Cylinder configuration: V angle		90	degrees (°)
10	Bore		135	mm
11	Stroke		156	mm
12	Displacement, cylinder		2.233	liter

 BL Reference value: fuel stop power

 Maximum engine power that cannot be run continuously on some applications (stabilization reserve)

 DL Reference value: continuous power

 Engine power that can be run continuously under standard conditions

Actual value must be greater than specified value
 Actual value must be less than specified value

Adequate verification not yet available (tolerance +/-10%)
^{an} Adequate verification not yet available (tolerance +/-5%)

A Design value
 Value required for the design of an external system
 (plant)
 Couldeline value
 for design purposes to a limited extent
 Limit value
 A value representing the lower limit/minimum value or
 upper limit/maximum value that may not be
 exceeded. Not suitable for design purposes

- Product Data -

Name Application Group Dataset 12V2000G16F 3B Ref. 25°C/-; Air charge air cooling

Speed [rpm]	1500
Nominal power [kW]	665
Nominal power [bhp]	891
Frequency [Hz]	50

Exhaust Regulations

NOx emission optimized ;

13	Displacement, total		26.8	liter
14	Compression ratio		17.5	-
40	Cylinder heads: single-cylinder		x	-
41	Cylinder liners: wet, replaceable		x	-
24	Number of inlet valves, per cylinder		2	-
25	Number of exhaust valves, per cylinder		2	-
15	Number of turbochargers		2	-
16	Number of L.P. turbochargers		-	-
17	Number of H.P. turbochargers		-	-
18	Number of intercoolers		1	-
19	Number of L.P. intercoolers		-	-
20	Number of H.P. intercoolers		-	-
28	Standard flywheel housing flange (engine main PTO)		0	SAE
50	Static bending moment at standard	1	N	kNm
50	flywheel housing flange, max.	L	11	KINITI
51	Dynamic bending moment at standard		N	LAL
21	flywheel housing flange, max.	L	IN .	kNm
43	Flywheel interface (DISC)		18"	-
46	Engine mass diagram, drawing No.		N	-
47	Engine mass diagram, drawing No. (cont.)		N	-

5. Combustion air / exhaust gas

No.	Description	Index	Value	Unit
33	Charge-air flow through external air-to-air intercooler	А	N	m³/s
34	Charge-air temperature before external		188	°C
54	air-to-air intercooler	А	100	L
35	Charge-air temperature after external		50	*6
30	air-to-air intercooler	А	50	°C
26	Charge-air temperature after external		6F	°C
36	air-to-air intercooler, max.	L	65	°C
37	Charge-air temperature after external		10	°C
57	air-to-air intercooler, min.	L	10	L
39	Pressure differential in external		130	un hau
29	air-to-air intercooler, max.	L	150	mbar
8	Charge-air pressure before cylinder - CP	R	2.9	bar abs
27	Charge-air pressure before cylinder - FSP	R	3.2	bar abs
9	Combustion air volume flow - CP	R	0.81	m³/s
10	Combustion air volume flow - FSP	R	0.89	m³/s
11	Exhaust volume flow (at exhaust temperature) - CP	R	2.2	m³/s
12	Exhaust volume flow (at exhaust temperature) - FSP	R	2.4	m³/s
17	Exhaust temperature after engine - CP	R	535	°C
18	Exhaust temperature after engine - FSP	R	540	°C
58	Exhaust temperature after engine (turbocharger), max.	L	670	°C

6. Heat dissipation

No.	Description	Index	Value	Unit

 BL
 Reference value: fuel stop power

 Maximum engine power that cannot be run continuously on some applications (stabilization reserve)
 DL

 DL
 Reference value: continuous power

 Engine power that can be run continuously under standard conditions
 conditions

Actual value must be greater than specified value
 Actual value must be less than specified value

 X Applicable

 The module is valid for this product type

 Non-applicable

 The module is not valid for this product type

 Mole applicable

 The module is not valid for this product type

 Mole applicable

 The work of the module is not valid for this product type

 M Value on named

 The value has not yet been named or will not be named

Adequate verification not yet available (tolerance +/-10%)
^{an} Adequate verification not yet available (tolerance +/-5%)

Design value
 Value required for the design of an external system
 (plant)
 Guideline value
 Typical average value as information – only suitable
 for design purposes to a limited extent
 Limit value
 A value representing the lower limit/minimum value or
 upper limit/maximum value that may not be
 exceeded. Not suitable for design purposes

- Product Data -

Name Application Group Dataset 12V2000G16F 3B Ref. 25°C/-; Air charge air cooling

Speed [rpm]	1500
Nominal power [kW]	665
Nominal power [bhp]	891
Frequency [Hz]	50

Exhaust Regulations NOx e

NOx emission optimized ;

60	Heat dissipated by engine coolant - CP	R	280	kW
00	(high-temperature circuit)	к	280	ĸvv
61	Heat dissipated by engine coolant - CP	R		kW
01	(low-temperature circuit)	n	-	ĸvv
62	Heat dissipated by engine coolant - FSP	R	300	kW
02	(high-temperature circuit)	n	300	ĸvv
63	Heat dissipated by engine coolant - FSP	D		kW
05	(low-temperature circuit)	R	-	ĸvv
26	Charge-air heat dissipation - CP	R	130	kW
27	Charge-air heat dissipation - FSP	R	160	kW
31	Heat dissipated by return fuel flow - CP	R	3.5	kW
32	Heat dissipated by return fuel flow - FSP	R	3.5	kW
33	0	R	35	kW
34	Radiation and convection heat, engine - FSP	R	35	kW

7. Coolant system (high-temperature circuit)

No.	Description	Index	Value	Unit
17	Coolant temperature	٥	100	°C
1/	(at engine outlet to cooling equipment)	А	100	C
20	Coolant temperature after engine, limit 1	L	102	°C
21	Coolant temperature after engine, limit 2	L	105	°C
25	Coolant antifreeze content, max.	L	50	%
30	Cooling equipment: coolant flow rate	А	31.6	m³/h
35	Coolant pump: inlet pressure, min.	L	0.4	bar
36	Coolant pump: inlet pressure, max.	L	1.5	bar
41	Pressure loss in off-engine cooling system, max.	L	1.0	bar
72	Pressure loss in off-engine cooling system, min.	L	0.3	bar
47	Breather valve (expansion tank)	D	1.0	hau
47	opening pressure (excess pressure)	R	1.0	bar
54	Cooling equipment: height above engine, max.	L	20	m
50	Thermostat, starts to open	R	79	°C

8. Coolant system (low-temperature circuit)

No.	Description	Index	Value	Unit
0	Coolant temperature before intercooler	^		°C
9	(at engine inlet from cooling equipment)	А	-	L
13	Coolant antifreeze content, max.	L	-	%
17	Charge-air temperature after intercooler, max.	L	-	°C
76	Temperature differential between intake air and			V
70	charge-air coolant before intercooler	А	-	ĸ
20	Cooling equipment: coolant flow rate	А	-	m³/h
24	Coolant pump: inlet pressure, min.	L	-	bar
25	Coolant pump: inlet pressure, max.	L	-	bar
29	Pressure loss in off-engine cooling system, max.	L	-	bar
62	Pressure loss in off-engine cooling system, min.	L	-	bar
43	Cooling equipment: height above engine, max.	L	-	m

 BL Reference value: fuel stop power

 Maximum engine power that cannot be run continuously on some applications (stabilization reserve)

 DL Reference value: continuous power

 Engine power that can be run continuously under standard conditions

Actual value must be greater than specified value
 Actual value must be less than specified value

 X
 Applicable

 The module is valid for this product type
 Non-applicable

 Ibe module is not valid for this product type
 Non-applicable

 The module is not valid for this product type
 Non-applicable

 IN Value not named
 Non-applicable

Adequate verification not yet available (tolerance +/-10%)
^{an} Adequate verification not yet available (tolerance +/-5%)

Design value
 Value required for the design of an external system
 (plant)
 Guideline value
 Typical average value as information – only suitable
 for design purposes to a limited extent
 Limit value
 A value representing the lower limit/minimum value or
 upper limit/maximum value that may not be
 exceeded. Not suitable for design purposes

- Product Data -

Name	12V2000G16F	Speed [rpm]	1500
Application Group	3B	Nominal power [kW]	665
Dataset	Ref. 25°C/-; Air charge air cooling	Nominal power [bhp]	891
		Frequency [Hz]	50

Exhaust Regulations

NOx emission optimized ;

36	Breather valve (expansion tank) opening pressure (excess pressure)	R	-	bar
39	Thermostat, starts to open	R	-	°C

10. Lube oil system

No.	Description	Index	Value	Unit
110.				
1	Lube oil operating temp. before engine, from	R	75	°C
2	Lube oil operating temp. before engine, to	R	100	°C
5	Lube oil temperature before engine, limit 1	L	103	°C
6	Lube oil temperature before engine, limit 2	L	105	°C
8	Lube oil operating press. bef. engine, from	R	5.8	bar
9	Lube oil operating press. bef. engine, to	R	8.5	bar
10	Lube oil pressure before engine, alarm	L	4.5	bar
11	Lube oil pressure before engine, shutdown	L	4.0	bar
19	Lube oil fine filter (main circuit):		1	
19	number of units		1	-
20	Lube oil fine filter (main circuit):		2	
20	number of elements per unit		2	-
22	Lube oil fine filter (main circuit):		1.0	hau
32	pressure differential, max.	L	1.0	bar

11. Fuel system

No.	Description	Index	Value	Unit
3307	Fuel pressure at fuel feed connection, min.		0.5	barabs
5507	(when engine is starting), absolute pressure	Ľ	0.5	bar abs
3309	Fuel pressure at fuel feed connection, max.		1.5	havaha
5509	(when engine is starting), absolute pressure	L	1.5	bar abs
3308	Fuel pressure at fuel feed connection, min.		0.5	havaha
5508	(when engine is running), absolute pressure	L	0.5	bar abs
3310	Fuel pressure at fuel feed connection, max. (permanent), absolute pressure	L	1.0	bar abs
3311	Fuel pressure at fuel feed connection, specification		XZ54407000001	-
4211	Max. fuel supply volume		25	litor/min
4211	Normal mode	A	25	liter/min
4212	Max. fuel supply volume	•	25	lite a lasia
4212	Failure mode	A	23	liter/min
77	Max. fuel return volume		25	lite a lasia
//	Normal mode	R	25	liter/min
4184	Max. fuel return volume		25	lite a lasia
4104	Failure mode	R	25	liter/min
10	Fuel pressure at return connection on engine, max.	L	0.5	bar
13	Fuel temperature differential before/after engine, max.	L	15	К
18	Fuel fine filter (main circuit): number of units	А	1	-
19	Fuel fine filter (main circuit): number of elements per unit	А	4	-
20	Fuel fine filter (main circuit): particle retention	А	0.005	mm
21	Fuel fine filter (main circuit): pressure differential, max.	L	1.0	bar

 BL Reference value: fuel stop power

 Maximum engine power that cannot be run continuously on some applications (stabilization reserve)

 DL Reference value: continuous power

 Engine power that can be run continuously under standard conditions

Actual value must be greater than specified value
 Actual value must be less than specified value

Adequate verification not yet available (tolerance +/-10%)
^{an} Adequate verification not yet available (tolerance +/-5%)

Design value
 Value required for the design of an external system
 (plant)
 Guideline value
 Typical average value as information – only suitable
 for design purposes to a limited extent
 Limit value
 A value representing the lower limit/minimum value or
 upper limit/maximum value that may not be
 exceeded. Not suitable for design purposes

- Product Data -

Name **Application Group** Dataset

12V2000G16F 3B Ref. 25°C/-; Air charge air cooling

Speed [rpm]	1500
Nominal power [kW]	665
Nominal power [bhp]	891
Frequency [Hz]	50

Exhaust Regulations NOx emission optimized ;

12. General operating data

No.	Description	Index	Value	Unit
1	Cold start capability: air temperature	R	0	°C
T	(w/o starting aid, w/o preheating) - (case A)	n	8	C
22	Coolant preheating, preheating temperature, min.	L	32	°C
3506	Coolant preheating, preheating temperature, max.	L	55	°C
28	Breakaway torque (without driven machinery)	D		Nm
20	coolant temperature +5°C	R	-	INITI
30	Breakaway torque (without driven machinery)			New
50	coolant temperature +40°C	R	-	Nm
20	Cranking torque at firing speed (without driven machinery)			New
29	coolant temperature +5°C	R	-	Nm
24	Cranking torque at firing speed (without driven machinery)	_		
31	coolant temperature +40°C	R	-	Nm
00	Starting is blocked if the engine coolant temperature is		20	
96	below		-20	°C
37	High idling speed, max. (static)	L	1660	rpm
38	Limit speed for overspeed alarm / emergency shutdown	L	1800	rpm
42	Firing speed, from	R	100	rpm
43	Firing speed, to	R	120	rpm
44	Engine coolant temperature before starting full-load operation, recommended		40	°C
44	min.	R	40	L
48	Minimum continuous load	R	20	%
49	Extended low or no-load operation possible		х	
49	(consultation required)		^	-
50	Engine mass moment of inertia	D	2.67	kam ²
50	(without flywheel)	R	2.07	kgm²
52	Standard flywheel mass moment of inertia	R	2.99	kgm²
1981	Block bending moment - SAE 0	R	N	kNm
69	Speed droop (with electronic governor) adjustable, from	R	0	%
70	Speed droop (with electronic governor) adjustable, to	R	5	%

13. Starting (electric)

No.	Description	Index	Value	Unit
2309	Manufacturer		PRESTOLITE	-
2310	Number of starter		1	-
2312	Starter electrically redundant		-	-
2313	Rated power per starter	R	7.5	kW
2314	Starter, rated voltage	R	24	VDC
2315	Rated short-circuit current per starter	L	1730	A
2316	Power consumption per starter	D	720	
2310	(at an engine speed of 100 rpm)	R		A
3000	Power consumption per starter			
3000	(at an engine speed of 100 rpm, SAE0)	R	-	A
3002	Power consumption per starter	D		
	(at an engine speed of 100 rpm, SAE1)	R	-	A

 BL Reference value: fuel stop power

 Maximum engine power that cannot be run continuously on some applications (stabilization reserve)

 DL Reference value: continuous power

 Engine power that can be run continuously under standard conditions

Actual value must be greater than specified value
 Actual value must be less than specified value

 X Applicable

 The module is valid for this product type

 Non-applicable

 The module is not valid for this product type

 Will applicable Work applicable

 The module is not valid for this product type

 Work applicable

 The walue has not yet been named or will not be named

Adequate verification not yet available (tolerance +/-10%)
^{an} Adequate verification not yet available (tolerance +/-5%)

Design value
 Value required for the design of an external system
 (plant)
 Guideline value
 Typical average value as information – only suitable
 for design purposes to a limited extent
 Linti value
 A value representing the lower limit/minimum value or
 upper limit/maximum value that may not be
 exceeded. Not suitable for design purposes

- Product Data -

Name Application Group Dataset 12V2000G16F 3B Ref. 25°C/-; Air charge air cooling

Speed [rpm]	1500
Nominal power [kW]	665
Nominal power [bhp]	891
Frequency [Hz]	50

Exhaust Regulations NOx emission optimized ;

2317 Internal resistance of power supply + line resistance per starter 0.008 Ω A 2318 PRESTOLITE Manufacturer 2319 Number of starter 2320 Starter electrically redundant 2321 Rated power per starter 7.5 kW R 2322 Starter, rated voltage R 24 VDC 2323 Rated short-circuit current per starter 1730 A Power consumption per starter 2324 R 720 A (at an engine speed of 100 rpm) Power consumption per starter 3001 R A (at an engine speed of 100 rpm, SAE0) Power consumption per starter 3003 R A (at an engine speed of 100 rpm, SAE1) 2325 Internal resistance of power supply + line resistance per starter А 0.008 0 2347 Generally valid data for starter Х Rated starting-attempt Duration (at +20°C ambient temperature with battery 2342 R 3 S Interval between starts 2343 5 s (at rated starting-attempt duration), min. 2345 15 Maximum acceptable starting-attempt duration I. s Interval between starts 2344 R 60 s (when starting-attempt duration > rated starting-attempt duration) Starting attempts within 30 minutes 2346 6 (at +20°C ambient temperature with battery full), max.

15. Starting (pneumatic/oil pressure starter)

No.	Description	Index	Value	Unit
36	Pneumatic starter: make TDI	mach	X	-
5	Starting air pressure before starter motor, min.	R	8	bar
6	Starting air pressure before starter motor, max.	R	9	bar
7	Starting air pressure before starter motor, min.	L	8	bar
8	Starting air pressure before starter motor, max.	L	9	bar
18	Start attempt duration (engine preheated)	R	3	S
19	Start attempt duration (engine not preheated)	R	5	S
20	Start attempt duration, max.	L	-	S
114	Air consumption/start attempt (engine preheated) Engine without generator Control with engine controller	R	1.1	m³n
115	Air consumption/start attempt (engine not preheated) Engine without generator Control with engine controller	R	1.2	m³n
116	Air consumption with external control for air-starter (per second	R	0.6	m³n
23	Starting air tank for 3 start attempts (max. 40 bar) (engine preheated)	R	-	liter

 BL
 Reference value: fuel stop power

 Maximum engine power that cannot be run continuously on some applications (stabilization reserve)
 D_

 D_
 Reference value: continuous power

 Engine power that can be run continuously under standard conditions
 conditions

Actual value must be greater than specified value
 Actual value must be less than specified value

 X
 Applicable

 The module is valid for this product type
 Non-applicable

 The module is not valid for this product type
 N

 N
 value not named

 The value has not yet been named or will not be named
 N

Adequate verification not yet available (tolerance +/-10%)
Adequate verification not yet available (tolerance +/-5%)

Design value
 Value required for the design of an external system
 (plant)
 Gideline value
 Typical average value as information – only suitable
 for design purposes to a limited extent
 Limit value
 A value representing the lower limit/minimum value or
 upper limit/maximum value that may not be
 exceeded. Not suitable for design purposes

- Product Data -

Name **Application Group** Dataset

12V2000G16F 3B Ref. 25°C/-; Air charge air cooling

Speed [rpm]	1500
Nominal power [kW]	665
Nominal power [bhp]	891
Frequency [Hz]	50

Exhaust Regulations NOx emission optimized ;

Starting air tank for 3 start attempts 24 R liter (max. 30 bar) (engine preheated) Starting air tank for 6 start attempts 25 R liter (max. 40 bar) (engine preheated) Starting air tank for 6 start attempts 26 R liter (max. 30 bar) (engine preheated) Starting air tank for 10 start attempts 27 R liter (max. 40 bar) (engine preheated) Starting air tank for 10 start attempts 28 R liter (max. 30 bar) (engine preheated) Starting air tank for 3 start attempts 29 R Ν liter (max. 40 bar) (engine not preheated) Starting air tank for 3 start attempts 30 R Ν liter (max. 30 bar) (engine not preheated) Starting air tank for 6 start attempts 31 R Ν liter (max. 40 bar) (engine not preheated) Starting air tank for 6 start attempts 32 R Ν liter (max. 30 bar) (engine not preheated) Starting air tank for 10 start attempts 33 R Ν liter (max. 40 bar) (engine not preheated) Starting air tank for 10 start attempts 34 R Ν liter (max. 30 bar) (engine not preheated)

16. Inclinations - standard oil system (ref.: waterline)

No.	Description	Index	Value	Unit
	Longitudinal inclination, continuous max.			
15	driving end down	L	5	degrees (°)
	(Option: max. operating inclinations)			
	Longitudinal inclination, continuous max.			
17	driving end up	L	5	degrees (°)
	(Option: max. operating inclinations)			
19	Transverse inclination, continuous max.		10	degrees (°)
19	(Option: max. operating inclinations)	L	10	uegrees ()

18. Capacities

No.	Description	Index	Value	Unit
1	Engine coolant capacity (without cooling equipment)	R	63	liter
10	Intercooler coolant capacity	R	-	liter
11	On-engine fuel capacity	R	6	liter
	Engine oil capacity, initial filling			
14	(standard oil system)	R	92	liter
	(Option: max. operating inclinations)			
	Oil change quantity, max.			
20	(standard oil system)	R	80	liter
	(Option: max. operating inclinations)			

 BL
 Reference value: fuel stop power

 Maximum engine power that cannot be run continuously on some applications (stabilization reserve)
 D_

 D_
 Reference value: continuous power

 Engine power that can be run continuously under standard conditions
 conditions

Actual value must be greater than specified value
Actual value must be less than specified value

Applicable
 The module is valid for this product type
 Don-applicable The module is not valid for this product type
 N Value not named The value has not yet been named or will not be named

Adequate verification not yet available (tolerance +/-10%)

Adequate verification not yet available (tolerance +/-5%)

Design value
 Value required for the design of an external system
 (plant)
 R Guideline value
 trypical average value as information – only suitable
 for design purposes to a limited extent
 Limit value
 A value representing the lower limit/minimum value or
 upper limit/maximum value that may not be
 exceeded. Not suitable for design purposes

- Product Data -

Name	12V2000G16F	Speed [rpm]	1500
Application Group	3B	Nominal power [kW]	665
Dataset	Ref. 25°C/-; Air charge air cooling	Nominal power [bhp]	891
		Frequency [Hz]	50

Exhaust Regulations NOx emission optimized ;

2024	Oil pan capacity, dipstick mark min. (standard oil system)	R	65	liter
2025	Oil pan capacity, dipstick mark max.	D	70	liter
	(standard oil system)	n	70	iitei

19. Masses / dimensions

No.	Description	Index	Value	Unit
	Engine mass, dry			
9	(basic engine configuration acc. to	R	2640	kg
	scope of supply specification)			
	Engine mass, wet			
10	(basic engine configuration acc. to	R	2805	kg
	scope of supply specification)			

20. Fan / fan cooler

No.	Description	Index	Value	Unit
1	Standard design		-	-
3	Fan, pusher-type		х	-
9	Fan drive: mechanical via V-belt		x	-
13	Fan: speed	R	Ν	rpm

21. Exhaust emissions

No.	Description	Index	Value	Unit
2005	Emissions data sheet:			
2005	NEA Singapore for ORDE		-	-
1959	Emissions data sheet:			
1959	US EPA Tier 4i		-	-
2052	Emissions data sheet:			
2052	MoEF India / CPCB Stage II		-	-
1972	Emissions data sheet:			
	Fuel-consumption optimized		-	-

22. Acoustics

No.	Description	Index	Value	Unit
	Exhaust noise, unsilenced - CP			
101	(free-field sound-pressure level Lp, 1m distance,	R	112	dB(A)
	ISO 6798, +3dB(A) tolerance)			
201	Exhaust noise, unsilenced - CP	D	125	
	(sound power level LW, ISO 6798, +3dB(A) tolerance)	R	125	dB(A)
	Exhaust noise, unsilenced - CP			
103	(free-field sound-pressure level Lp, 1m distance,	D	736690e	
	ISO 6798)	R	7300900	-
	Spectrum No.			

 BL Reference value: fuel stop power

 Maximum engine power that cannot be run continuously on some applications (stabilization reserve)

 DL Reference value: continuous power

 Engine power that can be run continuously under standard conditions

Actual value must be greater than specified value
 Actual value must be less than specified value

Adequate verification not yet available (tolerance +/-10%)
^{an} Adequate verification not yet available (tolerance +/-5%)

Design value
 Value required for the design of an external system
 (plant)
 Guideline value
 Typical average value as information – only suitable
 for design purposes to a limited extent
 Linti value
 A value representing the lower limit/minimum value or
 upper limit/maximum value that may not be
 exceeded. Not suitable for design purposes

- Product Data -

Name	12V2000G16F	Speed [rpm]	1500
Application Group	3B	Nominal power [kW]	665
Dataset	Ref. 25°C/-; Air charge air cooling	Nominal power [bhp]	891
		Frequency [Hz]	50

Exhaust Regulations NOx emission optimized ;

109	Engine surface noise with attenuated intake noise (filter) - CP (free-field sound-pressure level Lp, 1m distance, ISO 6798, +2dB(A) tolerance)	R	100	dB(A)
209	Engine surface noise with attenuated intake noise (filter) - CP (sound power level LW, ISO 6798, +2dB(A) tolerance)	R	117	dB(A)
111	Engine surface noise with attenuated intake noise (filter) - CP (free-field sound-pressure level Lp, 1m distance, ISO 6798) Spectrum No.	R	736704e	-

23. TBO and load profile (case A)

No.	Description	Index	Value	Unit
1	TBO (Time between Overhaul)		18000	h
	(related to standard load profile (Pn,tn))	L		
22	P1 (percent load related to CP)	R	110	%
3	t1 (percentage of operating time)	R	1	%
24	P2 (percent load related to CP)	R	100	%
5	t2 (percentage of operating time)	R	9	%
26	P3 (percent load related to CP)	R	70	%
7	t3 (percentage of operating time)	R	90	%
28	P4 (percent load related to CP)	R	-	%
9	t4 (percentage of operating time)	R	-	%
30	P5 (percent load related to CP)	R	-	%
18	t5 (percentage of operating time)	R	-	%
11	Mean utilization rate (percentage of rated power)	R	<75	%
12	Number of load changes/hour, type I	D	2	-
	(< 10% to >90% load)	R		
13	Number of load changes/hour, type II	D	2	-
	(< 10% to between 70% and 90% load)	R		
15	Maintenance schedule No.		N	-
16	Maintenance schedule No. (cont.)		N	-

 BL Reference value: fuel stop power

 Maximum engine power that cannot be run continuously on some applications (stabilization reserve)

 DL Reference value: continuous power

 Engine power that can be run continuously under standard conditions

Actual value must be greater than specified value
 Actual value must be less than specified value

 X Applicable

 The module is valid for this product type

 Non-applicable

 The module is not valid for this product type

 Will applicable Work applicable

 The module is not valid for this product type

 Work applicable

 The walue has not yet been named or will not be named

Adequate verification not yet available (tolerance +/-10%)
^{an} Adequate verification not yet available (tolerance +/-5%)

A) Design value
 Value required for the design of an external system
 (plan)
 Couldeline value
 for design purposes to a limited extent
 Limit value
 A value representing the lower limit/minimum value or
 upper limit/maximum value that may not be
 exceeded. Not suitable for design purposes